

Sorting and ranking policies to foster technological innovations in the electricity sector in Brazil: A Delphi-based multi-criteria approach

Luis C. Dias

INESC Coimbra, CeBER and Faculty of Economics University of Coimbra, Portugal

Carlos Henggeler Antunes

INESC Coimbra and Dept. of Electrical and Computer Engineering University of Coimbra, Portugal

Guilherme Dantas

Nivalde de Castro

GESEL – Instituto de Economia Universidade Federal do Rio de Janeiro, Brazil

Lucca Zamboni

EDP Brasil, Brazil

Conference on Innovation Decision Support Using Structured Expert Judgement Aalto University, Espoo, 25-27 April 2017

Modernization of electricity systems Significant investments for innovation Which incentive policies are the most interesting?

- Brazilian reality (informed by experience of other countries)
- Project sponsored by the regulator and a company

Methods

Problem structuring

Delphi elicitation

Multicriteria analysis

Structuring process: evaluation criteria and policies

- Literature review on experiences from 18 countries
- Technical visits to Germany, Italy, France and Portugal
- Meetings with main players in Brazil: regulator, electricity companies, grid operator, academia, development bank
- International seminar in Coimbra
- Research workshop
- Peter Checkland's Soft Systems Methodology

Soft Systems Methodology CATWOE analysis

CATWOE perspectives:

- The smart grids as an instrument to optimize resources
- The smart grids as opportunity of development and business
- The smart grids to foster environmentally friendly technologies
- The smart grids to empower consumers and micro-generators

Clients	What are the benefits and the disadvantages and why are they important?
System operator, Distributor	Lower costs, better quality of service, better information/monitoring, management flexibility, lower technical risks
Society	Cvber risks
	Lower costs and losses, better quality of service
	Lower privacy, lower equity
Actors	What is a good/bad performance?
System operator, Generator, Distributor	Lower costs, higher resiliency and reliability
	Collapse/network dysfunction, loss of sensitive information, loss of commitment
Consumer	Fraud/crime, loss of commitment, lack of collaboration
World view	Objectives unveiled
Smart grids contribute to avoid/mitigate	Efficient utilization of installed capacity
inefficiencies	More efficient market
Owner	Why stop or change the activity?
Government, Regulator	Social acceptance, lack of funding, unverified economic benefits
Environmental constraints	Objectives unveiled
Financial resources	Modernize the network
Present technological basis	Form qualified staff and develop R&D
Existing know-how	Technological diffusion
Existing potential	Security of supply

Structuring a hierarchy of objectives

~100 issues found in the literature, meetings and workshops (SSM)

- Clustering by semantic analysis
- Top-level categories associated with functional value

Structuring: policies to assess

- P1 Mandatory roll out of smart meters
- P2 Regulatory changes for technological innovation
- P3 Support for R&D
- P4 Incentives for demand management, distributed generation and storage
- P5 Definition of mandatory telecommunication quality requirements
- P6 Regulatory changes for new business models
- P7 Smart cities development plan
- P8 National policy to develop a smart grid industry

Type of synthesis ("problématiques")

Choice / Selection: select best e.g., selecting a single policy among alternative proposals Ranking: rank from best to worst e.g., prioritization of policies (from highest to lowest priority)

Classification / Sorting: assign to categories e.g., assigning policies to priority levels:

Uninteresting | Wait | Priority | Max Prior.

ELECTRE TRI Sorting approach

 a_i belongs to class $C^c \Leftrightarrow$

a_i outranks b^{c-1} but does not outrank b^c

a_i outranks a lower bound b^c only if:

- The majority of the criteria agrees (considering their weights and a majority threshold)
- No criterion opposes a veto (considering veto thresholds)

Assessment of policies, weights and veto thresholds: Delphi survey

Two rounds

28 participants

- 7 from governmental organizations
- 8 from companies
- 13 from academia and consultants

1) Tendo em consideração o objetivo de "Beneficiar o ambiente e a saúde humana", indique qual o impacto que atribui a cada uma das seguintes								ites				
	-5 = Extremamente Negativo	-4	-3	-2	-1	0 = Sem Impacto	+1	+2	+3	+4	+5 = Extremamente Positivo	N/A
1 - Roll Out Mandatório de Smart Meters (?)												
2 - Mudanças Regulatórias que incitem Inovações no Setor Elétrico (?)	۲	۲	0	0	٢	۲	۲	0	0	0	0	٢
3 - Aprimoramento dos Projetos de Pesquisa e Desenvolvimento e Demonstração (?)												
4 - Politicas de Incentivo ao Gerenciamento da Demanda, Geração Distribuída e Estocagem (?)	٢	0	٢	٢	۲	0	0	۵	۲	0	0	۲
5 - Estabelecimento de Padrões de Qualidade para a Indústria de Telecomunicações (?)												
6 - Regulamentação de Novos Modelos de Negócios (?)	0	۲	0	۲	0	0	0	۲	۲	0	0	۲
7 - Plano de Desenvolvimento de Cidades Inteligentes (?)												
8 - Política Nacional de Desenvolvimento da Indústria de Redes Inteligentes	۲		0	0	0	0		0	٥	0	•	٢

How much does each policy contribute to each one of the higher level objectives?

What is a bad enough level to veto implementation?

What is the relative importance of each criterion?

Assessment of policies: Delphi survey

 How much does each policy contribute to each one of the higher level objectives:

Impact	P1 Mandatory roll out of smart meters	P2 Regulatory changes for technological innovation	P3 Support for R&D	P4 Incentives for demand mgt, distrib. generation and storage	P5 Mandatory telecom quality requirements	P6 Regulatory changes for new business models	P7 Smart cities development plan	P8 National policy to smart grid industry
-5 extremely negative	0%	0%	0%	0%	0%	0%	0%	0%
 -4 very strong negat. 	0%	0%	0%	0%	0%	0%	0%	0%
 -3 strong negative 	0%	0%	0%	0%	4%	0%	0%	0%
-2 moderately negat.	4%	0%	0%	0%	0%	0%	0%	0%
 -1 slightly negative 	4%	0%	0%	0%	0%	0%	0%	0%
0 no impact	18%	0%	7%	0%	15%	14%	7%	7%
1 slightly positive	25%	14%	14%	4%	15%	7%	4%	4%
2 moderately positive	32%	18%	18%	11%	15%	14%	7%	21%
3 strong positive	14%	36%	29%	18%	26%	29%	11%	21%
4 very strong positive	0%	21%	25%	32%	22%	25%	29%	32%
5 extremely positive	4%	11%	7%	36%	4%	11%	43%	14%
Performance level	1,5	3	3	4	2,5	3	4	3
% above	50%	32%	39%	32%	48%	36%	29%	32%
% below	50%	32%	32%	36%	52%	36%	43%	46%

Veto power: Delphi survey

• Indicate for each objective what impact levels you would consider negative enough to discard implementation:

	Crit.1	Crit.2	Crit.3 Security of	Crit.4 Electric energy	Crit.5 Benefit to	Crit.6 Benefit to	Crit.7 Feasibility and
Impact	& health	capability	supply	markets	agents	country	adoption
-5 extremely negative	8%	0%	4%	4%	4%	19%	4%
 -4 very strong negat. 	4%	15%	12%	8%	8%	0%	12%
-3 strong negative	8%	27%	19%	35%	27%	12%	27%
-2 moderately negat.	31%	31%	31%	27%	42%	35%	31%
 1 slightly negative 	19%	12%	19%	12%	0%	19%	8%
0 no impact	31%	15%	15%	15%	19%	15%	19%
1 slightly positive	0%	0%	0%	0%	0%	0%	0%
2 moderately positive	0%	0%	0%	0%	0%	0%	0%
3 strong positive	0%	0%	0%	0%	0%	0%	0%
4 very strong positive	0%	0%	0%	0%	0%	0%	0%
5 extremely positive	0%	0%	0%	0%	0%	0%	0%
Performance level	-1,5	-2	-2	-2	-2	-2	-2
% above	50%	42%	35%	46%	38%	31%	42%
% below	50%	27%	35%	27%	19%	35%	27%

Criteria weights: Delphi survey

What is the relative importance of each criterion:

Stochastic parameter analysis

Hit & Run Monte-Carlo simulation complying with constraints on weights and required majority in [4/7, 5/7] (uniform distributions)

	C1 Uninter- esting	C2 Wait & see	C3 Low priority	C4 High priority
P1 - Roll Out Smart Meters	0	0	1.000	0
P2 - Regulatory changes	0	0	0.391	0.609
P3 - Support for R&D	0	0	1.000	0
P4 – Demand Management	0	0	0	1.000
P5 – Telecom standards	0	0	1.000	0
P6 – New business models	0	0	0.567	0.433
P7 – Smart cities	0	0	0.962	0.038
P8 – Smart grid industry	0	0	1.000	0

Classification probabilities

	Sorting (based on stochastic analysis)
P1 - Roll out smart meters	Implement with priority
P2 - Regulatory changes	Implement with high priority ^(*)
P3 - R&D and demonstration	Implement with priority
P4 - DSM/DG/S incentives	Implement with maximum priority
P5 - Telecom standards	Implement with priority
P6 - New business models	Implement with high priority ^(*)
P7 - Smart cities	Implement with high priority ^(*)
P8 - Smart grid industries	Implement with priority

^(*) Sorting varies between "Implement with priority" and "Implement with maximum priority"

Exact range analysis

Maximize and minimize outranking credibility complying with constraints on weights (linear programs)

	W(.)	B(.)	Ranking
P4 -DSM/DG/S incentives	4	4	1st
P2 - Regulatory changes	3	4	2nd
P6 - New business models	3	4	3rd
P7 - Smart cities	3	4	4th
P3 - R&D and demonstration	3	3	5/6th
P8 - Smart grid industries	3	3	5/6th
P5 - Telecom standards	3	3	7th
P1 - Roll out smart meters	3	3	8th

Summary of results

	Ranking
P4 - DSM/DG/S incentives	1st
P2 - Regulatory changes	2nd
P6 - New business models	3rd
P7 - Smart cities	4th
P3 - R&D and demonstration	5/6th
P8 - Smart grid industries	5/6th
P5 - Telecom standards	7th
P1 - Roll out smart meters	8th

Rank	Government perspective	Business perspective	Knowledge perspective
1st	P4 - DSM/DG/S incentives	P4 - DSM/DG/S incentives	P4 - DSM/DG/S incentives
2nd	P6 - New business models	P7 - Smart cities(*)	P2 - Regulatory changes(*)
3rd	P2 - Regulatory changes	P8 - Smart grid industries(*)	P7 - Smart cities(*)
4th	P8 - Smart grid industries	P2 - Regulatory changes	P6 - New business models
5th	P7 - Smart cities	P6 - New business models	P3 - R&D and demonstration
6th	P3 - R&D and demonstration	P3 - R&D and demonstration	P8 - Smart grid industries
7th	P5 - Telecom standards	P1 - Roll out smart meters	P1 - Roll out smart meters
8th	P1 - Roll out smart meters	P5 - Telecom standards	P5 - Telecom standards

Methodology summary

- Stakeholder participation
- SSM to elicit concerns
- Criteria hierarchy development
 - Qualitative assessments
 - Stakeholder participation
 - Three groups (perspectives)
 - Multiple perspectives
 - Constraints on weights
 - Stochastic analysis \rightarrow classes
 - Robustness → ranking within classes

Summary of results

All policies are deemed worthy of implementation

P4 - DSM/DG/S incentives has maximum priority

P2 - Regulatory changes has high priority for all perspectives

P6 - New business models is ranked 3rd, but with uneven support

P7 - Smart cities program has high priority, but not very strong support from the Government perspective.

P1, P3 and P5 have less priority, but are still interesting

United Nations University of Colmbra – Alta and Sofia Educational, Scientific and - inscribed on the World Heritage Cultural Organization - List in 2013

Thank you!

LMCDias@fe.uc.pt