

Estimating future antimicrobial resistance in Europe with structured expert judgement

Abigail Colson, Department of Management Science 27 April, 2017 Aalto University COST Meeting

Collaborators: Gerardo Alvarez-Uria, Tim Bedford, Sumanth Gandra, Ramanan Laxminarayan, Itamar Megiddo, and Alec Morton

Health

Antibiotic resistance: World on cusp of 'post-antibiotic era'

By James Gallagher Health editor, BBC News website

() 19 November 2015 | Health

What is a superbug?

NATURE | NEW S

< 🖿 🔒

WHO warns against 'post-antibiotic' era

Agency recommends global system to monitor spread of resistant microbes.

Sara Reardon

30 April 2014

Rights & Permissions

Carbapenem and 3rd. gen. cephalosporin resistance among *K. pneumoniae* highest along the East Coast, but present in all regions of the country

Note: Data for 2010 available through July.

Data source: Braykov NB, Eber MR, Klein EY, Morgan DJ, Laxminarayan R. Trends in Resistance to Carbapenems and Third- Generation Cephalosporins among Clinical Isolates of Klebsiella pneumoniae in the United States, 1999-2010. Infect Control and Hospital Epidemiology. 2013; 34(3)

THE CENTER FOR Disease Dynamics, Economics & Policy WASHINGTON DC • NEW DELHI

FIGURE 1-3: Percentage of carbapenem-resistant Klebsiella pneumoniae, by country (most recent year, 2011–2014)

Source: CDDEP. 2015. "The State of the World's Antibiotics, 2015." Washington, D.C.: Center for Disease Dynamics, Economics & Policy.

Antibiotic resistance is a coevolution problem.

Antibiotic resistance is a coevolution problem.

...and an innovation problem.

DRIVE-AB

Developing new economic models to incentivise antibiotic discovery and development activities while safeguarding the efficacy of antibiotics by researching and advocating their appropriate use.

October 2014 – September 2017

DRIVE-AB Work Packages

- WP 1A: Define "responsible" use of antibiotics
- WP 1B: Set, communicate and revise public health priorities
- WP 1C: Develop antibiotic valuation models
- WP 2: Create, test and validate new economic models
- WP 3A: Coordinate and manage the project
- WP 3B: Stakeholder platform and external communication

Determining the economic value of antibiotics

- In order to estimate the value of new antibiotics, we need to know:
 - The levels of resistance to current treatment options, now and in the future
 - The clinical impact of resistance
- Important data gaps exist for these questions, though more work is currently underway addressing them (including work by WP1B).
- To supplement the growing evidence base, we are using structured expert judgment (specifically, the classical model) to get estimates and uncertainty bounds related to the future trajectory of resistance.

What is "The Classical Model"?

- A method to combine and validate experts' quantifications of uncertainty
- It's NOT a method to coerce agreement between the experts
- The method has been used by WHO, EU, EPA, NOAA, NASA, etc.
- In the classical model, experts answer 2 types of questions:
 - Calibration (aka "seed") questions
 - Variables of interest
- With calibration variables, any expert (or combination of experts) can be treated like a statistical hypothesis.
- Experts' assessments are weighted according to performance and combined.

- ✓ Reproducibility
- ✓Accountability
- ✓ Empirical control
- ✓ Neutrality
- ✓ Fairness

An example question

In the United States in 2012, how many of the 4,104 tested *E. coli* isolates included in data from The Surveillance Network (TSN) were resistant to fluoroquinolones?

5%	25%	50%	75%	95%

An example question

In the United States in 2012, how many of the 4,104 tested *E. coli* isolates included in data from The Surveillance Network (TSN) were resistant to fluoroquinolones?

410	615	820	1435	2460
5%	25%	50%	75%	95%

An example question

In the United States in 2012, how many of the 4,104 tested *E. coli* isolates included in data from The Surveillance Network (TSN) were resistant to fluoroquinolones?

410	615	820	X 1435	2460
5%	25%	50%	75%	95%

True value: 1,230

Measuring expert performance

Statistical accuracy:

- Do the expert's assessments capture the true values at the expected frequency?
- P-value of a statistical test of the expert's hypotheses

Informativeness:

- How concentrated is the assessment, relative to a background measure?
- The background measure normally uniform with a 10% overshoot range.

Variables of interest

Bug/drug pairs

- 1. E. coli and fluoroquinolones
- 2. E. coli and cephalosporins
- 3. E. coli and carbapenems
- 4. K. pneumoniae and cephalosporins
- 5. K. pneumoniae and carbapenems
- 6. S. aureus and methicillin
- 7. S. pneumoniae and penicillins
- 8. N. gonorrhoeae and cephalosporins
- 9. P. aeruginosa and any treatment

Countries

- 1. Germany
- 2. France
- 3. UK
- 4. Spain
- 5. Italy

Why use expert judgment?

Existing relevant data are an imperfect picture of the past.

- Short history of observations.
- Data not representative.
- Definition of "resistant" not consistent over time.

Why use expert judgment?

Existing relevant data are an imperfect picture of the past.

- Short history of observations.
- Data not representative.
- Definition of "resistant" not consistent over time.

Experts have a lot of additional information about the future.

• Changes in antibiotic prescribing.

. . .

- Changes in hospital infection control.
- Changes in available treatment options.

Expert scores: United Kingdom

Expert	SA	Info	Combined	Weight (PW)
1	1.55E-03	0.47	7.33E-04	0
2	0.02	1.83	0.03	0.09
3	0.18	1.13	0.20	0.66
4	0.18	0.39	0.07	0.23
5	2.61E-03	1.99	0.01	0.02
6	1.96E-08	0.79	1.54E-08	0
PW	0.50	0.61	0.30	
EW	0.13	0.33	0.04	

Expert scores: Spain

Expert	SA	Info	Combined	Weight (PW)
1	1.22E-05	0.57	6.98E-06	0.23
2	1.03E-09	1.45	1.49E-09	0
3	1.99E-07	0.42	8.43E-08	0
4	3.23E-07	1.64	5.31E-07	0
5	2.24E-05	1.04	2.33E-05	0.77
PW	3.59E-05	0.67	2.39E-05	
EW	1.22E-05	0.23	2.82E-06	

Expert scores: France

Expert	SA	Info	Combined	Weight (PW)
1	2.20E-04	1.47	3.24E-04	0
2	0.03	1.38	0.04	0
3	1.99E-07	0.72	1.43E-07	0
4	2.16E-03	0.67	1.45E-03	0
5	0.65	1.96	1.28	1
PW	0.65	1.96	1.28	
EW	0.08	0.43	0.03	

Expert scores: Italy

Expert	SA	Info	Combined	Weight (PW)
1	0.03	0.63	0.02	0
2	0.02	0.46	0.01	0
3	0.45	0.47	0.21	1
4	5.56E-06	0.99	5.50E-06	0
PW	0.45	0.47	0.21	
EW	0.22	0.20	0.04	

Escherichia coli & Fluoroquinolones

Escherichia coli & Third-generation cephalosporins

Escherichia coli & Carbapenems

Staphylococcus aureus & Meticillin (MRSA)

Comparing SEJ to mathematical forecasting

Next steps

- Results of this work will feed into antibiotic valuation models.
- There are a lot of interesting dependencies to explore!
 - The same bug/drug combination in different years.
 - Different drugs treating the same bug.
 - The same drug treating different bugs.

Thank you!

abigail.colson@strath.ac.uk

This research has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n°115618 [Driving re-investment in R&D and responsible antibiotic use – DRIVE-AB – <u>www.drive-ab.eu</u>], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.

Klebsiella pneumoniae & Third-generation cephalosporins

Klebsiella pneumoniae & Carbapenems