

### Structural elicitation for Bayesian Networks

Joint work with Anca Hanea (CEBRA, UniMelb) and Sophia Wright (Univ of Warwick)

### Tina Nane (TU Delft)





Tina Nane (TU Delft)

Structural elicitation for BNs

26 April 2017, Aalto University, Espoo

< f

# **Citation Performance of Researchers**

### Influencing factors

- Publication record, years of activity
- Journal citation scores
- Field
- (International) collaboration, etc.



ina Nane (TU Delft)

26 April 2017, Aalto University, Espoo



# **Citation Performance of Researchers**

### Influencing factors

- Publication record, years of activity
- Journal citation scores
- Field
- (International) collaboration, etc.



## **TU**Delft

|          |         | D 10. |
|----------|---------|-------|
| l ina l  | Vane i  | Deltt |
| 1 1110 1 | a diffe | Dent  |

< 🗇



| <b>Ť</b> UDelft      |                                |                                        |        |
|----------------------|--------------------------------|----------------------------------------|--------|
|                      |                                | (中) (문) (문) (문) 문                      | ৩৫৫    |
| Tina Nane (TU Delft) | Structural elicitation for BNs | 26 April 2017, Aalto University, Espoo | 3 / 12 |



| <b>Ť</b> UDelft      |                                |                                        |        |
|----------------------|--------------------------------|----------------------------------------|--------|
|                      |                                | (中) (권) (혼) (혼) 문                      | ୬୯୯    |
| Tina Nane (TU Delft) | Structural elicitation for BNs | 26 April 2017, Aalto University, Espoo | 4 / 12 |

### Number of possible structures

| n          | 2 | 3  | 4   | 5     | 10                |
|------------|---|----|-----|-------|-------------------|
| nr of DAGs | 3 | 25 | 543 | 29281 | $4.2	imes10^{18}$ |



### Number of possible structures

| n          | 2 | 3  | 4   | 5     | 10                |
|------------|---|----|-----|-------|-------------------|
| nr of DAGs | 3 | 25 | 543 | 29281 | $4.2	imes10^{18}$ |

### Learning the structure of a Bayesian Network

### Experts

- Write all the variables of interest
- · Write all variables that could influence the variables of interest
- Write parents of these variables, etc.

### Data driven

- Constraint based algorithms
- Score based algorithms

Experts + Data

### **TU**Delft

Tina Nane (TU Delft)

- Need for a performance-based elicitation protocol
- How can we measure performance when eliciting the structure of a Bayesian Network?



- Need for a performance-based elicitation protocol
- How can we measure performance when eliciting the structure of a Bayesian Network?

### Our approach

- Expert
  - Ask experts about the conditional distribution of the variable of interest



・ロト ・何ト ・ヨト ・ヨト

- Need for a performance-based elicitation protocol
- How can we measure performance when eliciting the structure of a Bayesian Network?

### Our approach

- Expert
  - Ask experts about the conditional distribution of the variable of interest
- Data
  - 2 Assign arcs in particular order
  - 3 Compute the conditional distribution of the variable of interest
  - 4 Repeat 2 & 3



・ロト ・何ト ・ヨト ・ヨト

- Need for a performance-based elicitation protocol
- How can we measure performance when eliciting the structure of a Bayesian Network?

### Our approach

- Expert
  - Ask experts about the conditional distribution of the variable of interest
- Data
  - Assign arcs in particular order
  - 3 Compute the conditional distribution of the variable of interest
  - 4 Repeat 2 & 3
- Compare the conditional distributions in 1 and 3
- Choose the conditional distribution from data closest to the conditional distribution from experts (with respect to a particular distance)

### **TU**Delft

## Citation performance of researchers





# Citation performance of researchers



| <b>Ť</b> UDelft      |                                |                                                               |               |
|----------------------|--------------------------------|---------------------------------------------------------------|---------------|
|                      |                                | <ul><li>&lt; □&gt; &lt; @&gt; &lt; ≧&gt; &lt; ≧&gt;</li></ul> | $\mathcal{O}$ |
| Tina Nane (TU Delft) | Structural elicitation for BNs | 26 April 2017, Aalto University, Espoo                        | 7 / 12        |

## **IDEA** protocol



- Define problem
- Identify experts
- Find validation data
- Framing
- Training

#### Elicitation

- Individual
  - Investigation & set of individual estimates
- Feedback and facilitated
- 2<sup>nd</sup> set of individual Estimates

#### Post – Elicitation

- Aggregating experts' judgements
- Feedback
- Post-hoc analysis of results

### **T**UDelft

Tina Nane (TU Delft

#### Structural elicitation for BNs

26 April 2017, Aalto University, Espoo

# **IDEA** protocol



Two rounds of the Classical Model, intermediated by feedback and facilitated discussion

### **T**UDelft

Tina Nane (TU Delft)

Structural elicitation for BNs

26 April 2017, Aalto University, Espoo

### Round one

| Id     | Calibr. | Mean relative<br>realization | Normaliz.weight<br>without DM |
|--------|---------|------------------------------|-------------------------------|
| Α      | 0.01397 | 1.183                        | 0.0553                        |
| В      | 0.2895  | 0.5229                       | 0.5067                        |
| С      | 0.06083 | 0.6187                       | 0.126                         |
| D      | 0.06372 | 0.7125                       | 0.152                         |
| E      | 0.2895  | 0.1651                       | 0.16                          |
| DMperf | 0.4735  | 0.1377                       |                               |



### Round one

| ld     | Calibr. | Mean relative<br>realization | Normaliz.weight<br>without DM |
|--------|---------|------------------------------|-------------------------------|
| Α      | 0.01397 | 1.183                        | 0.0553                        |
| В      | 0.2895  | 0.5229                       | 0.5067                        |
| С      | 0.06083 | 0.6187                       | 0.126                         |
| D      | 0.06372 | 0.7125                       | 0.152                         |
| E      | 0.2895  | 0.1651                       | 0.16                          |
| DMperf | 0.4735  | 0.1377                       |                               |

### Round two

| Id     | Calibr. | Mean relative<br>realization | Normalized weight<br>without DM |
|--------|---------|------------------------------|---------------------------------|
| Α      | 0.04706 | 0.7362                       | 0.06141                         |
| В      | 0.4735  | 0.3703                       | 0.3108                          |
| С      | 0.6827  | 0.3883                       | 0.4699                          |
| D      | 0.06372 | 0.5211                       | 0.05885                         |
| E      | 0.2895  | 0.1931                       | 0.09908                         |
| DMpert | 0.6827  | 0.1418                       |                                 |

# **fu**Delft

Tina Nane (TU Delft)

26 April 2017, Aalto University, Espoo

### Influencing factors

| EXPERT A         | EXPERT B         | EXPERT C         | EXPERT D         | EXPERT E         |
|------------------|------------------|------------------|------------------|------------------|
| 1. Journal score | 1. Journal score | 1. pp_int_collab | 1. Journal score | 1. refs_paper    |
| 2. pp_int_collab | 2. pp_int_collab | 2. Journal score | 2. pp_int_collab | 2. Journal score |
| 3. Output        | 3. pp_collab     | 3. pp_collab     | 3. pp_collab     | 3. pp_int_collab |

| 14 |       |
|----|-------|
| TU | Delft |

ina Nane (TU Delft)

26 April 2017, Aalto University, Espoo



### Influencing factors

| EXPERT A         | EXPERT B         | EXPERT C         | EXPERT D         | EXPERT E         |
|------------------|------------------|------------------|------------------|------------------|
| 1. Journal score | 1. Journal score | 1. pp_int_collab | 1. Journal score | 1. refs_paper    |
| 2. pp_int_collab | 2. pp_int_collab | 2. Journal score | 2. pp_int_collab | 2. Journal score |
| 3. Output        | 3. pp_collab     | 3. pp_collab     | 3. pp_collab     | 3. pp_int_collab |

### Conditioning

• Given that the Journal score is at its 95% quantile and the International collaboration score is at its 95% quantile and the Output is at its 95% quantile, what are your estimates for the average citation performance of a researcher?



### Influencing factors

| EXPERT A         | EXPERT B         | EXPERT C         | EXPERT D         | EXPERT E         |
|------------------|------------------|------------------|------------------|------------------|
| 1. Journal score | 1. Journal score | 1. pp_int_collab | 1. Journal score | 1. refs_paper    |
| 2. pp_int_collab | 2. pp_int_collab | 2. Journal score | 2. pp_int_collab | 2. Journal score |
| 3. Output        | 3. pp_collab     | 3. pp_collab     | 3. pp_collab     | 3. pp_int_collab |

### Conditioning

 Given that the Journal score is at its 95% quantile and the International collaboration score is at its 95% quantile and the Output is at its 95% quantile, what are your estimates for the average citation performance of a researcher?

### Results

| Percenti | le | 5%    | 50%   | 95%    |
|----------|----|-------|-------|--------|
| Round    | 1. | 15.88 | 28.19 | 51.91  |
|          | 2. | 8.531 | 30.61 | 48.81  |
| Data     |    | 7.5   | 31.1  | 57.143 |

### **T**UDelft

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ □
26 April 2017, Aalto University, Espoo

# Discussion and conclusions

- Regardless the arcs assignment, the conditional distribution of the variable of interest might not change
- Given a particular structure of the BN, the experts can assess conditional distributions of the variable of interest quite accurately
- IDEA can help experts to become more calibrated, with a possible small decrease in information score
- IDEA can increase the performance of the DM



## Thank you!



# **T**UDelft

Tina Nane (TU Delft)

Structural elicitation for BNs

26 April 2017, Aalto University, Espoo

